Format

Send to

Choose Destination
Fitoterapia. 2013 Oct;90:160-84. doi: 10.1016/j.fitote.2013.07.003. Epub 2013 Jul 10.

Phytochemistry and biological properties of glabridin.

Author information

1
UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, USA. Electronic address: simmler@uic.edu.

Abstract

Glabridin, a prenylated isoflavonoid of G. glabra L. roots (European licorice, Fabaceae), has been associated with a wide range of biological properties such as antioxidant, anti-inflammatory, anti-atherogenic, regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, and skin-whitening. While glabridin is one of the most studied licorice flavonoids, a comprehensive literature survey linked to its numerous bioactivities is unavailable. The present review provides a comprehensive description of glabridin as a key chemical and biological marker of G. glabra, by covering both its phytochemical characterization and reported biological activities. Both glabridin and standardized licorice extracts have significant impact on food, dietary supplements (DSs) and cosmetic markets, as evidenced by the amount of available patents and scientific articles since 1976, when glabridin was first described. Nevertheless, a thorough literature survey also reveals that information about the isolation and chemical characterization of this important marker is scattered and less detailed than expected. Accordingly, the first part of this review gathers and provides all analytical and spectroscopic data required for the comprehensive phytochemical characterization of glabridin. The four most frequently described and most relevant bioactivities of glabridin are its anti-inflammatory, anti-atherogenic, estrogenic-like effects, and its capacity to regulate energy metabolism. While all bioactivities reported for glabridin belong to a wide array of targets, its principal biological properties are likely interconnected. To this end, the current state of the literature suggests that the biological activity of glabridin mainly results from its capacity to down-regulate intracellular reactive oxygen species, bind to antioxidant effectors, and act on estrogen receptors, potentially as a plant-based Selective Estrogen Receptor Modulator (phytoSERM).

KEYWORDS:

Anti-atherogenic; Chemical characterization; Glabridin; Metabolic syndrome; Pharmacokinetics; PhytoSERM

PMID:
23850540
PMCID:
PMC3795865
DOI:
10.1016/j.fitote.2013.07.003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center