Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):063304. doi: 10.1103/PhysRevE.87.063304. Epub 2013 Jun 12.

Abstract

In the present paper, we apply the implicit-correction method to the immersed-boundary thermal lattice Boltzmann method (IB-TLBM) for the natural convection between two concentric horizontal cylinders and in a square enclosure containing a circular cylinder. The Chapman-Enskog multiscale expansion proves the existence of an extra term in the temperature equation from the source term of the kinetic equation. In order to eliminate the extra term, we redefine the temperature and the source term in the lattice Boltzmann equation. When the relaxation time is less than unity, the new definition of the temperature and source term enhances the accuracy of the thermal lattice Boltzmann method. The implicit-correction method is required in order to calculate the thermal interaction between a fluid and a rigid solid using the redefined temperature. Simulation of the heat conduction between two concentric cylinders indicates that the error at each boundary point of the proposed IB-TLBM is reduced by the increment of the number of Lagrangian points constituting the boundaries. We derive the theoretical relation between a temperature slip at the boundary and the relaxation time and demonstrate that the IB-TLBM requires a small relaxation time in order to avoid temperature distortion around the immersed boundary. The streamline, isotherms, and average Nusselt number calculated by the proposed method agree well with those of previous numerical studies involving natural convection. The proposed IB-TLBM improves the accuracy of the boundary conditions for the temperature and velocity using an adequate discrete area for each of the Lagrangian nodes and reduces the penetration of the streamline on the surface of the body.

Publication types

  • Research Support, Non-U.S. Gov't