Format

Send to

Choose Destination
See comment in PubMed Commons below
Sci Transl Med. 2013 Jul 10;5(193):193ra90. doi: 10.1126/scitranslmed.3005794.

Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage.

Author information

1
Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.

Abstract

Intracranial hemorrhage in preterm neonates may result in neonatal mortality and functional disabilities, but its pathogenic mechanisms are poorly defined and better therapies are needed. We used a tetracycline-regulated transgenic system to test whether the induction of vascular endothelial growth factor (VEGF) in the germinal matrix leads to intracranial hemorrhage. This genetic strategy initially induced a dense network of loosely adjoined endothelial cells and pericytes near lateral ventricles, similar to the immature vascular rete in human fetal brains. Yet, this rich vascular network transformed into low-vasculature patches correlated with hemorrhage and caspase-3 activation near birth. Gene expression and biochemical analyses suggested that downstream mediators of VEGF in this network include transcriptional factors ETS1 and HIF2α (hypoxia-inducible factor 2α), components of the PDGFβ (platelet-derived growth factor β) and TGFβ (transforming growth factor-β) receptor signaling pathways, matrix metalloproteinase-9 (MMP-9), and cathepsins. Prenatal administration of glucocorticoids markedly reduced mortality and cerebral hemorrhage in mutant animals, as in human neonates. This protective effect was not due to blocking vasculogenesis, but was instead associated with inhibition of neurovascular proteases, notably MMP-9, cathepsin B, and caspase-3. Collectively, these results support a causative role of VEGF in perinatal cerebral hemorrhage and implicate its downstream proteases as potential therapeutic targets.

PMID:
23843451
DOI:
10.1126/scitranslmed.3005794
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center