Send to

Choose Destination
PLoS One. 2013 Jun 28;8(6):e67661. doi: 10.1371/journal.pone.0067661. Print 2013.

Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel.

Author information

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain.


The selective trafficking of proteins and RNAs through the nuclear envelope regulates nuclear-cytoplasmic segregation of macromolecules and is mediated by nucleopore complexes (NPCs), which consist of about 400 nucleoporins (Nups) of about 30 types. Extensive studies of nucleoporin function in yeast and vertebrates showed that Nups function in nucleocytoplasmic trafficking and other processes. However, limited studies of plant Nups have identified only a few mutations, which cause pleiotropic phenotypes including reduced growth and early flowering. Here, we describe loss-of-function alleles of Arabidopsis TRANSCURVATA1 (TCU1); these mutations cause increased hypocotyl and petiole length, reticulate and asymmetrically epinastic leaf laminae of reduced size, and early flowering. TCU1 is transcribed in all of the organs and tissues examined, and encodes the putative ortholog of yeast and vertebrate Nup58, a nucleoporin of the Nup62 subcomplex. Nup58 forms the central channel of the NPC and acts directly in translocation of proteins through the nuclear envelope in yeast and vertebrates. Yeast two-hybrid (Y2H) assays identified physical interactions between TCU1/NUP58 and 34 proteins, including nucleoporins, SCF (Skp1/Cul1/F-box) ubiquitin ligase complex components and other nucleoplasm proteins. Genetic interactions were also found between TCU1 and genes encoding nucleoporins, soluble nuclear transport receptors and components of the ubiquitin-proteasome and auxin signaling pathways. These genetic and physical interactions indicate that TCU1/NUP58 is a member of the Nup62 subcomplex of the Arabidopsis NPC. Our findings also suggest regulatory roles for TCU1/NUP58 beyond its function in nucleocytoplasmic trafficking, a hypothesis that is supported by the Y2H and genetic interactions that we observed.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center