Send to

Choose Destination
Mol Imaging Biol. 2014 Feb;16(1):63-73. doi: 10.1007/s11307-013-0661-8.

Imaging tumor growth non-invasively using expression of MagA or modified ferritin subunits to augment intracellular contrast for repetitive MRI.

Author information

Imaging Program, Lawson Health Research Institute, London, ON, Canada.



The bacterial gene MagA imparts magnetic properties to mammalian cells and provides a basis for cell tracking by magnetic resonance imaging (MRI). In a mouse model of tumor growth from transplanted cells, we used repetitive MRI to demonstrate the in vivo imaging potential of MagA expression relative to a modified ferritin overexpression system, lacking regulation through iron response elements (HF + LF).


Subcutaneous tumor xenografts were monitored weekly from days 2 to 34 post-injection. Small animal MRI employed balanced steady-state free precession. Imaging was correlated with tumor histology using hematoxylin, Prussian Blue, Ki-67, and BS-1 lectin.


Tumor heterogeneity with respect to tissue morphology and magnetic resonance (MR) contrast was apparent within a week of cell transplantation. In MagA- and HF + LF-expressing tumors, MR contrast enhancement was recorded up to day 20 post-injection and 0.073-cm(3) tumor volumes. MagA-expressing tumors showed increases in both quantity and quality of MR contrast as measured by fractional void volume and contrast-to-noise ratio, respectively. MR contrast in both MagA- and HF + LF-expressing tumors was maximal by day 13, doubling fractional void volume 1 week ahead of controls.


MagA- and HF + LF-expressing tumor xenografts augment MR contrast after 1 week of growth. MagA expression increases MR contrast within days of cell transplantation and provides MR contrast comparable to HF + LF. MagA has utility for monitoring cell growth and differentiation, with potential for in vivo detection of reporter gene expression using MRI.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center