Send to

Choose Destination
See comment in PubMed Commons below
Can J Physiol Pharmacol. 2013 Jul;91(7):521-7. doi: 10.1139/cjpp-2012-0329. Epub 2013 Mar 12.

Penehyclidine hydrochloride attenuates the cerebral injury in a rat model of cardiopulmonary bypass.

Author information

Department of Anaesthesiology, General Hospital of Shenyang Military Region, 83 Wenhua Road, Shenyang 110016, Liaoning Province, China.


This study investigated the effect of penehyclidine hydrochloride (PHC) on regulatory mediators during the neuroinflammatory response and cerebral cell apoptosis following cardiopulmonary bypass (CPB). Forty-eight rats were randomly divided among 4 groups as follows: sham-operation, vehicle, low-dose PHC (0.6 mg·(kg body mass)(-1)), and high-dose PHC (2.0 mg·(kg body mass)(-1)). CPB was performed in the latter 3 groups. The plasma levels of neuron specific enolase (NSE) and S-100B were tested with ELISA. Real-time PCR and Western blotting were used to evaluate the expression levels of matrix metalloproteinase-9 (MMP-9), IL-10, caspase-3, Bcl-2, and p38 in brain tissue. The ultrastructure of hippocampus tissue was examined under an electron microscope. PHC attenuated the increase of plasma NSE and S-100B following CPB. MMP-9, cleaved caspase-3, and phosphorylated p38 expression were substantially increased in the vehicle group compared with the sham-operation group and gradually diminished with increasing doses of PHC. IL-10 and Bcl-2 expression were markedly lower in the vehicle group than in the sham-operation group and gradually recovered with increasing doses of PHC. PHC attenuated the histopathological changes of cerebral injury following CPB. PHC favorably regulates the inflammatory response and reduces markers of neuronal injury following CPB, potentially by reducing p38 and caspase-3 activation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center