Send to

Choose Destination
See comment in PubMed Commons below
Curr Cancer Drug Targets. 2013 Oct;13(8):867-78.

β-Catenin knockdown in liver tumor cells by a cell permeable gamma guanidine-based peptide nucleic acid.

Author information

Endowed Chair for Experimental Pathology, Director- Division of Experimental Pathology (EP), Professor of Pathology (EP) & Medicine (GI, Hepatology and Nutrition), University of Pittsburgh School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261, USA.


Hepatocellular cancer (HCC) is the third cause of death by cancer worldwide. In the current study we target β- catenin, an oncogene mutated and constitutively active in 20-30% of HCCs, via a novel, cell permeable gamma guanidine-based peptide nucleic acid (γGPNA) antisense oligonucleotide designed against either the transcription or the translation start site of the human β-catenin gene. Using TOPflash, a luciferase reporter assay, we show that γGPNA targeting the transcription start site showed more robust activity against β-catenin activity in liver tumor cells that harbor β-catenin gene mutations (HepG2 & Snu-449). We identified concomitant suppression of β-catenin expression and of various Wnt targets including glutamine synthetase (GS) and cyclin-D1. Concurrently, γGPNA treatment reduced proliferation, survival and viability of HCC cells. Intriguingly, an angiogenesis quantitative Real-Time-PCR array identified decreased expression of several pro-angiogenic secreted factors such as EphrinA1, FGF-2, and VEGF-A upon β-catenin inhibition in liver tumor cells. Conversely, transfection of stabilized-β-catenin mutants enhanced the expression of angiogenic factors like VEGF-A. Conditioned media from HepG2 cells treated with β-catenin but not the mismatch γGPNA significantly diminished spheroid and tubule formation by SK-Hep1 cells, an HCC-associated endothelial cell line. Thus, we report a novel class of cell permeable and efficacious γGPNAs that effectively targets β-catenin, a known oncogene in the liver. Our study also identifies a novel role of β-catenin in liver tumor angiogenesis through paracrine mechanisms in addition to its roles in proliferation, survival, metabolism and cancer stem cell biology, thus further strengthening its effectiveness as a therapeutic target in HCC.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd. Icon for PubMed Central
    Loading ...
    Support Center