Resonance energy transfer: influence of neighboring matter absorbing in the wavelength region of the acceptor

J Chem Phys. 2013 Jul 7;139(1):014107. doi: 10.1063/1.4811793.

Abstract

In many of the materials and systems in which resonance energy transfer occurs, the individual chromophores are embedded within a superstructure of significantly different chemical composition. In accounting for the influence of the surrounding matter, the simplest and most widely used representation is commonly cast in terms of a dependence on local refractive index. However, such a depiction is a significant oversimplification, as it fails to register the electronic and local geometric effects of material specifically in the vicinity of the chromophores undergoing energy transfer. The principal objective of this study is to construct a detailed picture of how individual photon interaction events are modified by vicinal, non-absorbing chromophores. A specific aim is to discover what effects arise when input excitation is located in the neighborhood of other chromophores that have a slightly shorter wavelength of absorption; this involves a passive effect exerted on the transfer of energy at wavelengths where they themselves display no significant absorption. The theory is based on a thorough quantum electrodynamical analysis that allows the identification of specific optical and electronic chromophore attributes to expedite or inhibit electronic energy transfer. The Clausius-Mossotti dispersion relationship is then deployed to elicit a dependence on the bulk refractive index of the surroundings. A distinction is drawn between cases in which the influence on the electromagnetic coupling between the donor and the acceptor is primarily due to the static electric field produced by a polar medium, and converse cases in which the mechanism for modifying the form of energy transfer involves the medium acquiring an induced electric dipole. The results provide insights into the detailed quantum mechanisms that operate in multi-chromophore systems, pointing to factors that contribute to the optimization of photosystem characteristics.