Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Inform. 2013 Oct;46(5):830-6. doi: 10.1016/j.jbi.2013.06.010. Epub 2013 Jun 29.

Defining and measuring completeness of electronic health records for secondary use.

Author information

1
Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States. Electronic address: nicole.weiskopf@dbmi.columbia.edu.

Abstract

We demonstrate the importance of explicit definitions of electronic health record (EHR) data completeness and how different conceptualizations of completeness may impact findings from EHR-derived datasets. This study has important repercussions for researchers and clinicians engaged in the secondary use of EHR data. We describe four prototypical definitions of EHR completeness: documentation, breadth, density, and predictive completeness. Each definition dictates a different approach to the measurement of completeness. These measures were applied to representative data from NewYork-Presbyterian Hospital's clinical data warehouse. We found that according to any definition, the number of complete records in our clinical database is far lower than the nominal total. The proportion that meets criteria for completeness is heavily dependent on the definition of completeness used, and the different definitions generate different subsets of records. We conclude that the concept of completeness in EHR is contextual. We urge data consumers to be explicit in how they define a complete record and transparent about the limitations of their data.

KEYWORDS:

Completeness; Data quality; Electronic health records; Secondary use

PMID:
23820016
PMCID:
PMC3810243
DOI:
10.1016/j.jbi.2013.06.010
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center