Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11899-904. doi: 10.1073/pnas.1304210110. Epub 2013 Jul 1.

Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins.

Author information

1
Department of Biology, Wesleyan University, Middletown, CT 06459, USA.

Abstract

Classical hypotheses regarding the evolutionary origin of paired appendages propose transformation of precursor structures (gill arches and lateral fin folds) into paired fins. During development, gnathostome paired appendages form as outgrowths of body wall somatopleure, a tissue composed of somatic lateral plate mesoderm (LPM) and overlying ectoderm. In amniotes, LPM contributes connective tissue to abaxial musculature and forms ventrolateral dermis of the interlimb body wall. The phylogenetic distribution of this character is uncertain because lineage analyses of LPM have not been generated in anamniotes. We focus on the evolutionary history of the somatopleure to gain insight into the tissue context in which paired fins first appeared. Lampreys diverged from other vertebrates before the acquisition of paired fins and provide a model for investigating the preappendicular condition. We present vital dye fate maps that suggest the somatopleure is eliminated in lamprey as the LPM is separated from the ectoderm and sequestered to the coelomic linings during myotome extension. We also examine the distribution of postcranial mesoderm in catshark and axolotl. In contrast to lamprey, our findings support an LPM contribution to the trunk body wall of these taxa, which is similar to published data for amniotes. Collectively, these data lead us to hypothesize that a persistent somatopleure in the lateral body wall is a gnathostome synapomorphy, and the redistribution of LPM was a key step in generating the novel developmental module that ultimately produced paired fins. These embryological criteria can refocus arguments on paired fin origins and generate hypotheses testable by comparative studies on the source, sequence, and extent of genetic redeployment.

PMID:
23818600
PMCID:
PMC3718130
DOI:
10.1073/pnas.1304210110
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center