Send to

Choose Destination
J Phys Chem A. 2013 Aug 8;117(31):6771-80. doi: 10.1021/jp4040002. Epub 2013 Jul 24.

Hydrogen bond donors accelerate vibrational cooling of hot purine derivatives in heavy water.

Author information

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.


Natural nucleobases and many of their derivatives have ultrashort excited state lifetimes that make them excellent model systems for studying intermolecular energy flow from a hot solute molecule to the solvent. UV-pump/broadband-mid-IR-probe transient absorption spectra of canonical purine nucleobases and several xanthine derivatives were acquired in D2O and acetonitrile in the probe frequency range of 1500-1750 cm(-1). The spectra reveal that vibrationally hot ground state molecules created by ultrafast internal conversion return to thermal equilibrium in several picoseconds by dissipating their excess energy to solvent molecules. In acetonitrile solution, where hydrogen bonding is minimal, vibrational cooling (VC) occurs with the same time constant of 10 ± 3 ps for paraxanthine, theophylline, and caffeine within experimental uncertainty. In D2O, VC by these molecules occurs more rapidly and at different rates that are correlated with the number of N-D bonds. Hypoxanthine has a VC time constant of 3 ± 1 ps, while similar lifetimes of 2.3 ± 0.8 ps and 3.1 ± 0.3 ps are seen for 5'-adenosine monophosphate and 5'-guanosine monophosphate, respectively. All three molecules have at least two N-D bonds. Slightly slower VC time constants are measured for paraxanthine (4 ± 1 ps) and theophylline (5.1 ± 0.8 ps), dimethylated xanthines that have only one N-D bond. Caffeine, a trimethylated xanthine with no N-D bonds, has a VC time constant of 7.7 ± 0.9 ps, the longest ever observed for any nucleobase in aqueous solution. Hydrogen bond donation by solute molecules is proposed to enable rapid energy disposal to water via direct coupling of high frequency solute-solvent modes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center