Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2013 Aug;41(15):e152. doi: 10.1093/nar/gkt561. Epub 2013 Jun 27.

Quantitative assessment of ratiometric bimolecular beacons as a tool for imaging single engineered RNA transcripts and measuring gene expression in living cells.

Author information

Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA, Department of Biology, University of Pennsylvania, 433 S. University Ave, 102 Leidy Laboratories, Philadelphia, PA 19104, USA and Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA.


Recently, we developed an oligonucleotide-based probe, ratiometric bimolecular beacon (RBMB), which generates a detectable fluorescent signal in living cells that express the target RNA. Here, we show that RBMBs can also be used to image single RNA transcripts in living cells, when the target RNA is engineered to contain as few as four hybridization sites. Moreover, comparison with single-molecule fluorescence in situ hybridization confirmed that RBMBs could be used to accurately quantify the number of RNA transcripts within individual cells. Measurements of gene expression could be acquired within 30 min and using a wide range of RBMB concentrations. The ability to acquire accurate measurements of RNA copy number in both HT-1080 cells and CHO cells also suggests that RBMBs can be used to image and quantify single RNA transcripts in a wide range of cell lines. Overall, these findings highlight the robustness and versatility of RBMBs as a tool for imaging RNA in live cells. We envision that the unique capabilities of RBMBs will open up new avenues for RNA research.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center