Send to

Choose Destination
See comment in PubMed Commons below
J R Soc Interface. 2013 Jun 26;10(86):20130411. doi: 10.1098/rsif.2013.0411. Print 2013 Sep 6.

Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour.

Author information

  • 1Nano-Bioengineering Laboratory, Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hseuh Road, Hsinchu City 300, Taiwan, Republic of China.


In this communication, we report a facile nanotopographical control over a stainless steel surface via an electrophoretic deposition of colloidal amphiphilic chitosan for preferential growth, proliferation or migration of vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). Atomic force microscopy revealed that the colloidal surface exhibited a deposition time-dependent nanotopographical evolution, wherein two different nanotopographic textures indexed by 'kurtosis' (Rkur) value were easily designed, which were termed as 'sharp' (i.e. high peak-to-valley texture) surface and 'flat' (i.e. low peak-to-valley texture) surface. Cellular behaviour of VSMCs and HUVECs on both surfaces demonstrated topographically dependent morphogenesis, adherent responses and biochemical properties in comparison with bare stainless steel. The formation of a biofunctionalized surface upon a facile colloidal chitosan deposition envisions the potential application towards numerous biomedical devices, and this is especially promising for cardiovascular stents wherein a new surface with optimized texture can be designed and is expected to create an advantageous environment to stimulate HUVEC growth for improved healing performance.


biomimetic materials; cell-specific growth; colloidal chitosan; electrophoretic deposition; nanotopographic surface

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center