Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2013 Sep;79(17):5179-85. doi: 10.1128/AEM.01394-13. Epub 2013 Jun 21.

Structure-activity relationship of synthetic variants of the milk-derived antimicrobial peptide αs2-casein f(183-207).

Author information

1
Department of Microbiology, University College Cork, Cork, Ireland. a.alvarezordonez@ucc.ie

Abstract

Template-based studies on antimicrobial peptide (AMP) derivatives obtained through manipulation of the amino acid sequence are helpful to identify properties or residues that are important for biological activity. The present study sheds light on the importance of specific amino acids of the milk-derived αs2-casein f(183-207) peptide to its antibacterial activity against the food-borne pathogens Listeria monocytogenes and Cronobacter sakazakii. Trimming of the peptide revealed that residues at the C-terminal end of the peptide are important for activity. Removal of the last 5 amino acids at the C-terminal end and replacement of the Arg at position 23 of the peptide sequence by an Ala residue significantly decreased activity. These findings suggest that Arg23 is very important for optimal activity of the peptide. Substitution of the also positively charged Lys residues at positions 15 and 17 of the αs2-casein f(183-207) peptide also caused a significant reduction of the effectiveness against C. sakazakii, which points toward the importance of the positive charge of the peptide for its biological activity. Indeed, simultaneous replacement of various positively charged amino acids was linked to a loss of bactericidal activity. On the other hand, replacement of Pro residues at positions 14 and 20 resulted in a significantly increased antibacterial potency, and hydrophobic end tagging of αs2-casein f(193-203) and αs2-casein f(197-207) peptides with multiple Trp or Phe residues significantly increased their potency against L. monocytogenes. Finally, the effect of pH (4.5 to 7.4), temperature (4°C to 37°C), and addition of sodium and calcium salts (1% to 3%) on the activity of the 15-amino-acid αs2-casein f(193-207) peptide was also determined, and its biological activity was shown to be completely abolished in high-saline environments.

PMID:
23793637
PMCID:
PMC3753947
DOI:
10.1128/AEM.01394-13
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center