Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Psychol. 2013 Jun 11;4:338. doi: 10.3389/fpsyg.2013.00338. eCollection 2013.

Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics.

Author information

  • 1Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig Leipzig, Germany.

Abstract

The encoding of auditory spatial acuity (measured as the precision to distinguish between two spatially distinct stimuli) by neural circuits in both auditory cortices is a matter of ongoing research. Here, the event-related potential (ERP) mismatch negativity (MMN), a sensitive indicator of preattentive auditory change detection, was used to tap into the underlying mechanism of cortical representation of auditory spatial information. We characterized the MMN response affected by the degree of spatial deviance in lateral acoustic space using a passive oddball paradigm. Two stimulation conditions (SCs)-specifically focusing on the investigation of the mid- and far-lateral acoustic space-were considered: (1) 65° left standard position with deviant positions at 70, 75, and 80°; and (2) 95° left standard position with deviant positions at 90, 85, and 80°. Additionally, behavioral data on the minimum audible angle (MAA) were acquired for the respective standard positions (65, 95° left) to quantify spatial discrimination in separating distinct sound sources. The two measurements disclosed the linkage between the (preattentive) MMN response and the (attentive) behavioral threshold. At 65° spatial deviations as small as 5° reliably elicited MMNs. Thereby, the MMN amplitudes monotonously increased as a function of spatial deviation. At 95°, spatial deviations of 15° were necessary to elicit a valid MMN. The behavioral data, however, yielded no difference in mean MAA thresholds for position 65 and 95°. The different effects of laterality on MMN responses and MAA thresholds suggest a role of spatial selective attention mechanisms particularly relevant in active discrimination of neighboring sound sources, especially in the lateral acoustic space.

KEYWORDS:

auditory space processing; event-related potentials; minimal audible angle; mismatch negativity; sound localization; spatial resolution

PMID:
23781211
PMCID:
PMC3677983
DOI:
10.3389/fpsyg.2013.00338
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Support Center