Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells

PLoS One. 2013 Jun 12;8(6):e65268. doi: 10.1371/journal.pone.0065268. Print 2013.

Abstract

External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • Gene Expression Regulation, Viral / drug effects*
  • Gene Expression Regulation, Viral / genetics
  • Gene Targeting / methods*
  • Gene Transfer Techniques
  • Genetic Engineering / methods*
  • Genetic Vectors / genetics
  • Hepatitis B virus / genetics
  • Hepatitis B virus / physiology*
  • Humans
  • RNA, Small Untranslated
  • Salmonella
  • Virus Replication / drug effects*
  • Virus Replication / genetics

Substances

  • RNA, Small Untranslated