Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Sci. 2013 Mar 19;3(1):318-43. doi: 10.3390/brainsci3010318.

Sleep patterns and homeostatic mechanisms in adolescent mice.

Author information

1
Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA ; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.

Abstract

Sleep changes were studied in mice (n = 59) from early adolescence to adulthood (postnatal days P19-111). REM sleep declined steeply in early adolescence, while total sleep remained constant and NREM sleep increased slightly. Four hours of sleep deprivation starting at light onset were performed from ages P26 through adulthood (>P60). Following this acute sleep deprivation all mice slept longer and with more consolidated sleep bouts, while NREM slow wave activity (SWA) showed high interindividual variability in the younger groups, and increased consistently only after P42. Three parameters together explained up to 67% of the variance in SWA rebound in frontal cortex, including weight-adjusted age and increase in alpha power during sleep deprivation, both of which positively correlated with the SWA response. The third, and strongest predictor was the SWA decline during the light phase in baseline: mice with high peak SWA at light onset, resulting in a large SWA decline, were more likely to show no SWA rebound after sleep deprivation, a result that was also confirmed in parietal cortex. During baseline, however, SWA showed the same homeostatic changes in adolescents and adults, declining in the course of sleep and increasing across periods of spontaneous wake. Thus, we hypothesize that, in young adolescent mice, a ceiling effect and not the immaturity of the cellular mechanisms underlying sleep homeostasis may prevent the SWA rebound when wake is extended beyond its physiological duration.

KEYWORDS:

adolescence; cerebral cortex; sleep deprivation; slow wave activity

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center