Format

Send to

Choose Destination
Am J Pathol. 2013 Aug;183(2):604-16. doi: 10.1016/j.ajpath.2013.04.019. Epub 2013 Jun 12.

Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro.

Author information

1
Academic Renal Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom. becky.foster@bristol.ac.uk

Abstract

Damage to endothelial glycocalyx impairs vascular barrier function and may contribute to progression of chronic vascular disease. An early indicator is microalbuminuria resulting from glomerular filtration barrier damage. We investigated the contributions of hyaluronic acid (HA) and chondroitin sulfate (CS) to glomerular microvascular endothelial cell (GEnC) glycocalyx and examined whether these are modified by vascular endothelial growth factors A and C (VEGFA and VEGFC). HA and CS were imaged on GEnCs and their resynthesis was examined. The effect of HA and CS on transendothelial electrical resistance (TEER) and labeled albumin flux across monolayers was assessed. Effects of VEGFA and VEGFC on production and charge characteristics of glycosaminoglycan (GAG) were examined via metabolic labeling and liquid chromatography. GAG shedding was quantified using Alcian Blue. NDST2 expression was examined using real-time PCR. GEnCs expressed HA and CS in the glycocalyx. CS contributed to the barrier to both ion (TEER) and protein flux across the monolayer; HA had only a limited effect. VEGFC promoted HA synthesis and increased the charge density of synthesized GAGs. In contrast, VEGFA induced shedding of charged GAGs. CS plays a role in restriction of macromolecular flux across GEnC monolayers, and VEGFA and VEGFC differentially regulate synthesis, charge, and shedding of GAGs in GEnCs. These observations have important implications for endothelial barrier regulation in glomerular and other microvascular beds.

PMID:
23770346
PMCID:
PMC3730758
DOI:
10.1016/j.ajpath.2013.04.019
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center