Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2013 Jul 9;29(27):8728-35. doi: 10.1021/la401707u. Epub 2013 Jun 24.

Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu(1.94)S-ZnS heterostructured nanocrystals.

Author information

Department of Chemistry, Ministry of Education, Beijing JiaoTong University, Beijing 100044, PR China.


A facile one-pot heating process without any injection has been developed to synthesize different Cu-Zn-S-based nanocrystals. The composition of the products evolves from Cu(I)-doped ZnS (ZnS:Cu(I)) nanocrystals into heterostructured nanocrystals consisting of monoclinic Cu1.94S and wurtzite ZnS just by controlling the molar ratios of zinc acetylacetonate (Zn(acac)2) to copper acetylacetonate (Cu(acac)2) in the mixture of n-dodecanethiol (DDT) and 1-octadecene (ODE). Accompanying the composition transformation, the crystal phase of ZnS is changed from cubic zinc blende to hexagonal wurtzite. Depending on the synthetic parameters including the reaction time, temperature, and the feeding ratios of Zn/Cu precursors, the morphology of the as-obtained heterostructured nanocrystals can be controlled in the forms of taper-like, matchstick-like, tadpole-like, or rod-like. Interestingly, when the molar ratio of Cu(acac)2 to Zn(acac)2 is increased to 9:1, the crystal phase of the products is transformed from monoclinic Cu1.94S to the mixed phase composed of cubic Cu1.8S and tetragonal Cu1.81S as the reaction time is further prolonged. The crystal-phase transformation results in the morphological change from quasi-spherical to rice shape due to the incorporation of Zn ions into the Cu1.94S matrix. This method provides a simple but highly reproducible approach for synthesis of Cu(I)-doped nanocrystals and heterostructured nanocrystals, which are potentially useful in the fabrication of optoelectronic devices.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center