Format

Send to

Choose Destination
Exp Biol Med (Maywood). 2013 Apr;238(4):433-41. doi: 10.1177/1535370213477600.

Exercise training improves endothelial function in young prehypertensives.

Author information

1
Malcom Randall VA Medical Center, GRECC, Gainesville, FL 32601, USA. Darren.Beck@va.gov

Abstract

Prehypertensives exhibit marked endothelial dysfunction, a risk factor for future cardiovascular morbidity and mortality. However, the ability of exercise to ameliorate endothelial dysfunction in prehypertensives is grossly underinvestigated. This prospective randomized and controlled study examined the separate effects of resistance and endurance training on conduit artery endothelial function in young prehypertensives. Forty-three unmedicated prehypertensive (systolic blood pressure [SBP]=120-139 mmHg; diastolic blood pressure [DBP]=80-89 mmHg) but otherwise healthy men and women and 15 normotensive matched time-controls (NMTC); n = 15) between 18 and 35 y of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to either a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). The treatment groups performed exercise training three days per week for eight weeks. The control groups did not initiate exercise programs throughout the study. Flow mediated dilation (FMD) of the brachial artery, biomarkers of enodothelial function and peripheral blood pressure were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP (9.6 ± 3.6 and 11.9 ± 3.4 mmHg, respectively; P < 0.05) and DBP (8.0 ± 5.1 and 7.2 ± 3.4 mmHg, respectively; P < 0.05). Exercise training improved brachial artery FMD absolute diameter, percent dilation and normalized percent dilation by 30%, 34% and 19% for PHRT, P < 0.05; and by 54%, 63% and 75% for PHET, P < 0.05; respectively. PHRT and PHET increased plasma concentrations of 6-keto prostaglandin F1α (19% and 22%, respectively; P < 0.05), NO x (19% and 23%, respectively; P < 0.05), and reduced endothelin-1 by (16% and 24%, respectively; P < 0.01). This study provides novel evidence that resistance and endurance exercise separately have beneficial effects on resting peripheral blood pressure, brachial artery FMD and endothelial-derived vasoactive agents in young prehypertensives.

KEYWORDS:

endothelial function; endothelin; exercise; nitric-oxide; prehypertension

PMID:
23760009
PMCID:
PMC4457439
DOI:
10.1177/1535370213477600
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center