Send to

Choose Destination
Langmuir. 2013 Jul 9;29(27):8694-702. doi: 10.1021/la401264r. Epub 2013 Jun 25.

Variable range hopping in single-wall carbon nanotube thin films: a processing-structure-property relationship study.

Author information

High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA.


By varying the ultrasonication and ultracentrifugation conditions, single-walled carbon nanotube (SWCNT) dispersions with a broad range of SWCNT length and diameter (L = 342-3330 nm; d = 0.5-12 nm) were prepared and characterized by a preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) technique. The well-characterized dispersions were then fabricated into SWCNT thin films by spray coating. Combined optical, spectroscopic, and temperature-dependent electrical measurements were performed to study the effect of SWCNT structures on the charge transport behavior of SWCNT thin films. Regardless of SWCNT size in the dispersion and the thin film thickness, the three-dimensional variable range hopping (3D VRH) conduction model was found to be appropriate in explaining the temperature-dependent sheet resistance results for all SWCNT thin films prepared in this study. More importantly, with the SWCNT structural information determined by the PUM method, we were able to identify a strong correlation between the length of SWCNTs and the 3D VRH parameter T0, the Mott characteristic temperature. When the SWCNT length is less than ∼700 nm, the T0 of SWCNT thin films shows a drastic increase, but when the length is greater than ~700 nm, T0 is only weakly dependent on the SWCNT length. Under the framework of traditional VRH, we further conclude that the electron localization length of SWCNT thin films shows a similar dependence on the SWCNT length.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center