Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Magn. 2013 Jan;49(1):231-235.

Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

Author information

Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 USA.


The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.


Block copolymer micelles; drug delivery; hyperthermia; iron oxide nanoparticles

PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center