Format

Send to

Choose Destination
Sports Med. 2013 Nov;43(11):1101-30. doi: 10.1007/s40279-013-0063-8.

Water immersion recovery for athletes: effect on exercise performance and practical recommendations.

Author information

1
Performance Recovery, Australian Institute of Sport, PO Box 176, Belconnen, Canberra, ACT, 2616, Australia, nathan.versey@gmail.com.

Abstract

Water immersion is increasingly being used by elite athletes seeking to minimize fatigue and accelerate post-exercise recovery. Accelerated short-term (hours to days) recovery may improve competition performance, allow greater training loads or enhance the effect of a given training load. However, the optimal water immersion protocols to assist short-term recovery of performance still remain unclear. This article will review the water immersion recovery protocols investigated in the literature, their effects on performance recovery, briefly outline the potential mechanisms involved and provide practical recommendations for their use by athletes. For the purposes of this review, water immersion has been divided into four techniques according to water temperature: cold water immersion (CWI; ≤20 °C), hot water immersion (HWI; ≥36 °C), contrast water therapy (CWT; alternating CWI and HWI) and thermoneutral water immersion (TWI; >20 to <36 °C). Numerous articles have reported that CWI can enhance recovery of performance in a variety of sports, with immersion in 10-15 °C water for 5-15 min duration appearing to be most effective at accelerating performance recovery. However, the optimal CWI duration may depend on the water temperature, and the time between CWI and the subsequent exercise bout appears to influence the effect on performance. The few studies examining the effect of post-exercise HWI on subsequent performance have reported conflicting findings; therefore the effect of HWI on performance recovery is unclear. CWT is most likely to enhance performance recovery when equal time is spent in hot and cold water, individual immersion durations are short (~1 min) and the total immersion duration is up to approximately 15 min. A dose-response relationship between CWT duration and recovery of exercise performance is unlikely to exist. Some articles that have reported CWT to not enhance performance recovery have had methodological issues, such as failing to detect a decrease in performance in control trials, not performing full-body immersion, or using hot showers instead of pools. TWI has been investigated as both a control to determine the effect of water temperature on performance recovery, and as an intervention itself. However, due to conflicting findings it is uncertain whether TWI improves recovery of subsequent exercise performance. Both CWI and CWT appear likely to assist recovery of exercise performance more than HWI and TWI; however, it is unclear which technique is most effective. While the literature on the use of water immersion for recovery of exercise performance is increasing, further research is required to obtain a more complete understanding of the effects on performance.

PMID:
23743793
DOI:
10.1007/s40279-013-0063-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center