Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 2013 Jun 7;112(12):1613-23. doi: 10.1161/CIRCRESAHA.113.300939.

Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases.

Author information

1
Department of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA.

Abstract

High throughput sequencing technologies have become essential in studies on genomics, epigenomics, and transcriptomics. Although sequencing information has traditionally been elucidated using a low throughput technique called Sanger sequencing, high throughput sequencing technologies are capable of sequencing multiple DNA molecules in parallel, enabling hundreds of millions of DNA molecules to be sequenced at a time. This advantage allows high throughput sequencing to be used to create large data sets, generating more comprehensive insights into the cellular genomic and transcriptomic signatures of various diseases and developmental stages. Within high throughput sequencing technologies, whole exome sequencing can be used to identify novel variants and other mutations that may underlie many genetic cardiac disorders, whereas RNA sequencing can be used to analyze how the transcriptome changes. Chromatin immunoprecipitation sequencing and methylation sequencing can be used to identify epigenetic changes, whereas ribosome sequencing can be used to determine which mRNA transcripts are actively being translated. In this review, we will outline the differences in various sequencing modalities and examine the main sequencing platforms on the market in terms of their relative read depths, speeds, and costs. Finally, we will discuss the development of future sequencing platforms and how these new technologies may improve on current sequencing platforms. Ultimately, these sequencing technologies will be instrumental in further delineating how the cardiovascular system develops and how perturbations in DNA and RNA can lead to cardiovascular disease.

KEYWORDS:

epigenetics; genetics; genomics; heart diseases; sequence analysis, RNA; transcriptome

PMID:
23743227
PMCID:
PMC3831009
DOI:
10.1161/CIRCRESAHA.113.300939
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center