Send to

Choose Destination
Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):397-408. doi: 10.3109/10409238.2013.789479. Epub 2013 Jun 6.

NAD⁺ metabolism: a therapeutic target for age-related metabolic disease.

Author information

Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands.
Contributed equally


Nicotinamide adenine dinucleotide (NAD) is a central metabolic cofactor by virtue of its redox capacity, and as such regulates a wealth of metabolic transformations. However, the identification of the longevity protein silent regulator 2 (Sir2), the founding member of the sirtuin protein family, as being NAD⁺-dependent reignited interest in this metabolite. The sirtuins (SIRT1-7 in mammals) utilize NAD⁺ to deacetylate proteins in different subcellular compartments with a variety of functions, but with a strong convergence on optimizing mitochondrial function. Since cellular NAD⁺ levels are limiting for sirtuin activity, boosting its levels is a powerful means to activate sirtuins as a potential therapy for mitochondrial, often age-related, diseases. Indeed, supplying excess precursors, or blocking its utilization by poly(ADP-ribose) polymerase (PARP) enzymes or CD38/CD157, boosts NAD⁺ levels, activates sirtuins and promotes healthy aging. Here, we discuss the current state of knowledge of NAD⁺ metabolism, primarily in relation to sirtuin function. We highlight how NAD⁺ levels change in diverse physiological conditions, and how this can be employed as a pharmacological strategy.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for PubMed Central
Loading ...
Support Center