Send to

Choose Destination
Sci Rep. 2013;3:1940. doi: 10.1038/srep01940.

Novel n-3 immunoresolvents: structures and actions.

Author information

Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Erratum in

  • Sci Rep. 2014;4:6726.


Resolution of inflammation is now held to be an active process where autacoids promote homeostasis. Using functional-metabololipidomics and in vivo systems, herein we report that endogenous n-3 docosapentaenoic (DPA) acid is converted during inflammation-resolution in mice and by human leukocytes to novel n-3 products congenerous to D-series resolvins (Rv), protectins (PD) and maresins (MaR), termed specialized pro-resolving mediators (SPM). The new n-3 DPA structures include 7,8,17-trihydroxy-9,11,13,15E,19Z-docosapentaenoic acid (RvD1(n-3 DPA)), 7,14-dihydroxy-8,10,12,16Z,19Z-docosapentaenoic acid (MaR1(n-3 DPA)) and related bioactive products. Each n-3 DPA-SPM displayed protective actions from second organ injury and reduced systemic inflammation in ischemia-reperfusion. The n-3 DPA-SPM, including RvD1(n-3 DPA) and MaR1(n-3 DPA), each exerted potent leukocyte directed actions in vivo. With human leukocytes each n-3 DPA-SPM reduced neutrophil chemotaxis, adhesion and enhanced macrophage phagocytosis. Together, these findings demonstrate that n-3 DPA is converted to novel immunoresolvents with actions comparable to resolvins and are likely produced in humans when n-3 DPA is elevated.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center