Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2013 Jun 26;61(25):5979-86. doi: 10.1021/jf400342g. Epub 2013 Jun 13.

Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia.

Author information

1
Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, U.S. Department of Agriculture , Boston, Massachusetts 02111, United States.

Abstract

Blueberries contain an array of phytochemicals that may decrease both inflammatory and oxidative stress. This study determined if pterostilbene, resveratrol, and two anthocyanins commonly found in blueberries, delphinidin-3-O-glucoside and malvidin-3-O-glucoside, would be efficacious in protecting microglia from inflammatory-induced stress signaling. Microglia that were pretreated with blueberry extract (0.25, 0.5, 1, 2 mg/mL) or its components (1, 10, 20, 30 μM pterostilbene, resveratrol, delphinidin-3-O-glucoside, or malvidin-3-O-glucoside) prior to exposure to lipopolysaccharide (100 ng/mL) demonstrated concentration-dependent reductions in nitric oxide and tumor necrosis factor-alpha release and decreased expression of inducible nitric oxide synthase and cyclooxygenase-2. However, much higher concentrations of the individual components than those found in blueberries were needed to demonstrate the effects. For example, 1 mg/mL blueberry extract significantly reduced LPS-induced nitric oxide release; this concentration of blueberry extract contains 2.6 μM malvidin-3-O-glucoside, but when malvidin-3-O-glucoside was tested individually, 20 μM was necessary to observe a significant reduction in nitric oxide release. Therefore the protective effects of blueberries may not be due to any one component, but rather a synergism of the activity of the compounds tested and/or other blueberry compounds not tested here. These results lend further support that blueberry and its active components are able to combat some of the inflammatory mediators of aging at the cellular level.

PMID:
23731018
DOI:
10.1021/jf400342g
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center