Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2013 Jul 11;117(27):8269-82. doi: 10.1021/jp402559n. Epub 2013 Jun 28.

Characterization and dynamic properties for the solid inclusion complexes of β-cyclodextrin and perfluorooctanoic acid.

Author information

Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.


The structural characterization and dynamic properties of solid-state inclusion complexes (ICs) formed between β-cyclodextrin (β-CD; host) and perfluorooctanoic acid (PFOA; guest) were investigated using (13)C NMR spectroscopy. The 1:1 and 2:1 host/guest solid-state complexes were prepared using a modified dissolution method to obtain complexes with high phase purity. These complexes were further characterized using differential scanning calorimetry (DSC), FT-IR spectroscopy, powder X-ray diffraction (PXRD), (19)F directpolarization (DP), and (13)C cross-polarization (CP) with magic-angle spinning (MAS) NMR spectroscopy. The (19)F → (13)C CP results provided unequivocal support for the formation of well-defined inclusion compounds. The phase purity of the complexes formed between β-CD and PFOA were assessed using the (19)F DP NMR technique at variable temperature (VT) and MAS at 20 kHz. The complexes were found to be of high phase purity when prepared in accordance with the modified dissolution method. The motional dynamics of the guest in the solid complexes were assessed using T1/T2/T1ρ relaxation NMR methods at ambient and VT conditions. The relaxation data revealed reliable and variable guest dynamics for the 1:1 versus 2:1 complexes at the VTs investigated. The motional dynamics of the guest molecules involve an ensemble of axial motions of the whole chain and 120° rotational jumps of the methyl (CF3) group at the termini of the perfluorocarbon chain. The axial and rotational dynamics of the guest in the 1:1 and 2:1 complexes differ in distribution and magnitude in accordance with the binding geometry of the guest within the host.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center