Format

Send to

Choose Destination
Biomaterials. 2013 Aug;34(26):6147-56. doi: 10.1016/j.biomaterials.2013.04.064. Epub 2013 May 24.

N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration.

Author information

1
The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA. masayamada@tdc.ac.jp

Abstract

Bone regeneration often requires cues from osteogenesis-inducing factors for successful outcome. N-acetyl cysteine (NAC), an anti-oxidant small molecule, possibly modulates osteoblastic differentiation. This study investigated the potential of NAC as an osteogenesis-enhancing molecule in vitro and in vivo. Various concentrations of NAC (0, 2.5, 5.0, and 10 mM) were added to rat bone marrow stromal cell or osteoblastic cell culture in media with or without dexamethasone. The results showed marked enhancement of alkaline phosphatase activity and mineralized matrix formation together with consistent upregulation of bone-related gene markers such as collagen I, osteopontin, and osteocalcin in the osteoblastic culture with addition of 2.5 or 5.0 mM NAC regardless of the presence of dexamethasone. Micro-CT-based analysis and histological observation revealed that addition of NAC to a collagenous sponge implanted in a critical size cortical bone defect (3.0 mm × 5.0 mm) in rat femur yielded acceleration and completion of defect closure, with thick, compact, and contiguous bone after 6 weeks of healing. In contrast, with sponge alone, only sparse and incomplete bone regeneration was observed during the matching healing period. These results indicate that NAC can function as an osteogenesis-enhancing molecule to accelerate bone regeneration by activating differentiation of osteogenic lineages.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center