Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Genet. 2013 Jul;45(7):836-41. doi: 10.1038/ng.2649. Epub 2013 May 26.

DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape.

Author information

1
Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.

Abstract

Transposable element (TE)-derived sequences comprise half of the human genome and DNA methylome and are presumed to be densely methylated and inactive. Examination of genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues identified unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the relevant tissue type, and their expression correlated strongly with hypomethylation within the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks, including monomethylation of histone H3 at lysine 4 (H3K4me1) and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and showed evidence of evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type-specific regulatory networks and may have acquired tissue-specific epigenetic regulation.

PMID:
23708189
PMCID:
PMC3695047
DOI:
10.1038/ng.2649
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center