Format

Send to

Choose Destination
See comment in PubMed Commons below
Colloids Surf B Biointerfaces. 2013 Oct 1;110:36-44. doi: 10.1016/j.colsurfb.2013.04.020. Epub 2013 Apr 28.

Hemocompatible and antibacterial porous membranes with heparinized copper hydroxide nanofibers as separation layer.

Author information

1
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.

Abstract

Here we report the fabrication of a novel heparinized copper hydroxide (Cu(OH)2) nanofiberous membrane with satisfying hemocompatibility and antibacterial properties. The positively charged Cu(OH)2 nanofibers were prepared in a weakly alkaline copper nitrate solution in the presence of 2-aminoethanol. A heparin (Hep) solution was then added dropwise into the solution of nanofibers to immobilize negatively charged heparin onto the Cu(OH)2 nanofibers by electrostatic interaction. A composite Hep@Cu(OH)2 nanofiberous membrane was prepared by filtration and deposition of the heparinized nanofibers onto a polysulfone (PSF) porous membrane. Chemical composition analysis of membrane surface using X-ray photoelectron spectroscopy (XPS) confirmed the successful immobilization of heparin on Cu(OH)2 nanofibers. The amount of immobilized heparin on nanofiberous membrane was determined by a colorimetric assay of toluidine blue dye and the results showed that the amount of immobilized heparin was strongly dependent on the heparin dosage in reaction solution. The results of contact angle measurement indicated that the hydrophilicity of Cu(OH)2 nanofiberous membranes was enhanced by the immobilization of heparin. The adhesion, activation and transmutation of platelets on Hep@Cu(OH)2 membrane were suppressed remarkably due to the introduction of heparin, which suggested that the Hep@Cu(OH)2 membranes had good hemocompatibility. In addition, Cu(OH)2 and Hep@Cu(OH)2 nanofiberous membranes exhibited very good antibacterial activities against Escherichia coli and Staphyloccocus aureus.

PMID:
23707848
DOI:
10.1016/j.colsurfb.2013.04.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center