Format

Send to

Choose Destination
Stroke. 2013 Aug;44(8):2315-7. doi: 10.1161/STROKEAHA.113.001638. Epub 2013 May 23.

Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping.

Author information

1
Department of Radiology, Weill Medical College of Cornell University, New York, NY 10022, USA.

Abstract

BACKGROUND AND PURPOSE:

A novel quantitative susceptibility mapping (QSM) processing technology has been developed to map tissue susceptibility property without blooming artifacts. We hypothesize that hematoma volume measurement on QSM is independent of imaging parameters, eliminating its echo time dependence on gradient echo MRI.

METHODS:

Gradient echo MRI of 16 patients with intracerebral hemorrhage was processed with susceptibility-weighted imaging, R2* (=1/T2*) mapping, and QSM at various echo times. Hematoma volumes were measured from these images.

RESULTS:

Linear regression of hematoma volume versus echo time showed substantial slopes for gradient echo magnitude (0.45±0.31 L/s), susceptibility-weighted imaging (0.52±0.46), and R2* (0.39±0.30) but nearly zero slope for QSM (0.01±0.05). At echo time=20 ms, hematoma volume on QSM was 0.80× that on gradient echo magnitude image (R2=0.99).

CONCLUSIONS:

QSM can provide reliable measurement of hematoma volume, which can be performed rapidly and accurately using a semiautomated segmentation tool.

KEYWORDS:

gradient echo; hematoma volume; intracerebral hemorrhage; magnetic resonance imaging; quantitative susceptibility mapping

PMID:
23704111
PMCID:
PMC3752301
DOI:
10.1161/STROKEAHA.113.001638
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center