Format

Send to

Choose Destination
See comment in PubMed Commons below
Phys Chem Chem Phys. 2013 Jul 14;15(26):10914-20. doi: 10.1039/c3cp50713k. Epub 2013 May 24.

Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions.

Author information

1
Department of Chemistry, Nuclear Research Centre Negev, Beer-Sheva 84190, Israel. leonidv@nrcn.org.il

Abstract

LaMnO3 perovskite was successfully synthesized in molten chlorides. In order to explore the effect of the molten salt type, NaCl-KCl and LiCl-KCl eutectic mixtures were employed as a liquid medium for the perovskite formation process. The synthesis included heating the La-nitrate, Mn-nitrate and chlorides mixture to above the melting point of the corresponding chlorides. This procedure yielded a LaMnO3 phase integrated in the fused chloride matrix. Washing with water removed the salts completely, yielding pure LaMnO3 perovskite crystals. The synthesis without molten salt at 800 °C yielded several by-products in addition to the LaMnO3 phase, while with LiCl-KCl the pure perovskite phase was obtained at temperatures as low as 600 °C. Variation of temperature in the range 600-800 °C for LiCl-KCl and 700-800 °C for NaCl-KCl had no significant effect either on the morphology or on the particle size of the product. On the other hand, the effect of the molten salt type on the morphology and size of perovskite particles was remarkable. The synthesis in NaCl-KCl resulted in sub-micron LaMnO3 particles with shapes that range from truncated hexahedrons to spheres, while in LiCl-KCl mostly cubic particles of up to 2-microns were obtained. The effect of the molten salt type on LaMnO3 perovskite formation is explained based on the nucleation and crystal growth model and difference in the melting point of eutectic mixtures.

PMID:
23703217
DOI:
10.1039/c3cp50713k
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center