Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):173-80. doi: 10.1109/TCBB.2012.141.

The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease.

Collaborators (255)

Weiner M, Aisen P, Weiner M, Aisen P, Petersen R, Jack CR Jr, Jagust W, Trojanowki JQ, Toga AW, Beckett L, Green RC, Saykin AJ, Morris J, Liu E, Green RC, Montine T, Petersen R, Aisen P, Gamst A, Thomas RG, Donohue M, Walter S, Gessert D, Sather T, Beckett L, Harvey D, Gamst A, Donohue M, Kornak J, Jack CR Jr, Dale A, Bernstein M, Felmlee J, Fox N, Thompson P, Schuff N, Alexander G, DeCarli C, Jagust W, Bandy D, Koeppe RA, Foster N, Reiman EM, Chen K, Mathis C, Morris J, Cairns NJ, Taylor-Reinwald L, Trojanowki JQ, Shaw L, Lee VM, Korecka M, Toga AW, Crawford K, Neu S, Saykin AJ, Foroud TM, Potkin S, Shen L, Kachaturian Z, Frank R, Snyder PJ, Molchan S, Kaye J, Quinn J, Lind B, Dolen S, Schneider LS, Pawluczyk S, Spann BM, Brewer J, Vanderswag H, Heidebrink JL, Lord JL, Petersen R, Johnson K, Doody RS, Villanueva-Meyer J, Chowdhury M, Stern Y, Honig LS, Bell KL, Morris JC, Ances B, Carroll M, Leon S, Mintun MA, Schneider S, Marson D, Griffith R, Clark D, Grossman H, Mitsis E, Romirowsky A, deToledo-Morrell L, Shah RC, Duara R, Varon D, Roberts P, Albert M, Onyike C, Kielb S, Rusinek H, de Leon MJ, Glodzik L, De Santi S, Doraiswamy P, Petrella JR, Coleman R, Arnold SE, Karlawish JH, Wolk D, Smith CD, Jicha G, Hardy P, Lopez OL, Oakley M, Simpson DM, Porsteinsson AP, Goldstein BS, Martin K, Makino KM, Ismail M, Brand C, Mulnard RA, Thai G, Mc-Adams-Ortiz C, Womack K, Mathews D, Quiceno M, Diaz-Arrastia R, King R, Weiner M, Martin-Cook K, DeVous M, Levey AI, Lah JJ, Cellar JS, Burns JM, Anderson HS, Swerdlow RH, Apostolova L, Lu PH, Bartzokis G, Silverman DH, Graff-Radford NR, Parfitt F, Johnson H, Farlow MR, Hake AM, Matthews BR, Herring S, van Dyck CH, Carson RE, MacAvoy MG, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Hsiung GY, Feldman H, Mudge B, Assaly M, Kertesz A, Rogers J, Trost D, Bernick C, Munic D, Kerwin D, Mesulam MM, Lipowski K, Wu CK, Johnson N, Sadowsky C, Martinez W, Villena T, Turner RS, Johnson K, Reynolds B, Sperling RA, Johnson KA, Marshall G, Frey M, Yesavage J, Taylor JL, Lane B, Rosen A, Tinklenberg J, Sabbagh M, Belden C, Jacobson S, Kowall N, Killiany R, Budson AE, Norbash A, Johnson PL, Obisesan TO, Wolday S, Bwayo SK, Lerner A, Hudson L, Ogrocki P, Fletcher E, Carmichael O, Olichney J, DeCarli C, Kittur S, Borrie M, Lee TY, Bartha R, Johnson S, Asthana S, Carlsson CM, Potkin SG, Preda A, Nguyen D, Tariot P, Fleisher A, Reeder S, Bates V, Capote H, Rainka M, Scharre DW, Kataki M, Zimmerman EA, Celmins D, Brown AD, Pearlson GD, Blank K, Anderson K, Saykin AJ, Santulli RB, Schwartz ES, Sink KM, Williamson JD, Garg P, Watkins F, Ott BR, Querfurth H, Tremont G, Salloway S, Malloy P, Correia S, Rosen HJ, Miller BL, Mintzer J, Flynn Longmire C, Spicer K, Finger E, Rachinsky I, Rogers J, Kertesz A, Drost D.

Author information

1
State Key Laboratory of Cognitive Neuroscience and Learning, College of Information Science and Technology, Beijing Normal University, Beijing, P.R. China. wuxia@bnu.edu.cn

Abstract

Given a single index, the receiver operational characteristic (ROC) curve analysis is routinely utilized for characterizing performances in distinguishing two conditions/groups in terms of sensitivity and specificity. Given the availability of multiple data sources (referred to as multi-indices), such as multimodal neuroimaging data sets, cognitive tests, and clinical ratings and genomic data in Alzheimer’s disease (AD) studies, the single-index-based ROC underutilizes all available information. For a long time, a number of algorithmic/analytic approaches combining multiple indices have been widely used to simultaneously incorporate multiple sources. In this study, we propose an alternative for combining multiple indices using logical operations, such as “AND,” “OR,” and “at least n” (where n is an integer), to construct multivariate ROC (multiV-ROC) and characterize the sensitivity and specificity statistically associated with the use of multiple indices. With and without the “leave-one-out” cross-validation, we used two data sets from AD studies to showcase the potentially increased sensitivity/specificity of the multiV-ROC in comparison to the single-index ROC and linear discriminant analysis (an analytic way of combining multi-indices). We conclude that, for the data sets we investigated, the proposed multiV-ROC approach is capable of providing a natural and practical alternative with improved classification accuracy as compared to univariate ROC and linear discriminant analysis.

PMID:
23702553
PMCID:
PMC4085147
DOI:
10.1109/TCBB.2012.141
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
    Loading ...
    Support Center