Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2219-28. doi: 10.1073/pnas.1306807110. Epub 2013 May 21.

Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts.

Author information

1
Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.

Abstract

Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ~200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production.

KEYWORDS:

comparative genomics; effector-triggered immunity; fungal genetics; obligate biotrophy; plant–microbe interactions

PMID:
23696672
PMCID:
PMC3683789
DOI:
10.1073/pnas.1306807110
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center