Send to

Choose Destination
Toxicol Mech Methods. 2013 Oct;23(8):584-90. doi: 10.3109/15376516.2013.807532. Epub 2013 Jun 26.

Ascorbic acid protects against colistin sulfate-induced neurotoxicity in PC12 cells.

Author information

College of Veterinary Medicine and.


This study aimed to examine the protective effect of ascorbic acid against colistin-induced neurotoxicity mediated by oxidative stress, a potential mechanism. An in vitro neurotoxicity model was established with PC12 cells exposed to 125 µg/mL colistin sulfate for 24 h. PC12 cells were treated with colistin (125 µg/mL) in the absence and presence of ascorbic acid (0.1, 1.0 and 10 µM/mL) for 24 h. Both 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were carried out to evaluate cell viability. The levels of intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) levels were assessed. Moreover, we tested the level of DNA fragmentation, the release of cytochrome-c and the expressions of caspase-9 and -3 mRNA. The results showed that 1 and 10 µM/mL ascorbic acid significantly increased the cell viability and the levels of SOD and GSH (both p<0.05), while 0.1, 1 and 10 µM/mL ascorbic acid significantly decreased the generation of ROS, the release of cytochrome-c, formation of DNA fragmentation and the expressions of caspase-9 and -3 mRNA in colistin-treated PC12 cells, compared with the colistin model group. These results suggest that ascorbic acid could reduce colistin sulfate-induced neurotoxicity through the resistance of oxidative stress and the prevention of apoptosis mediated via mitochondria pathway. They also highlight the potential of coadministering ascorbic acid to widen the therapeutic dose of colistin.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center