Send to

Choose Destination
See comment in PubMed Commons below
Nan Fang Yi Ke Da Xue Xue Bao. 2013 May;33(5):649-53.

[CaMKIIγ promotes in vitro and in vivo growth of colorectal cancer cells by upregulating nuclear factor-κB signaling pathway].

[Article in Chinese]

Author information

School of Medicine, Zhejiang University, Hangzhou, China.



To investigate the effects of the γ isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIγ) on colorectal cancer (CRC) cell growth in vitro and in vivo and explore the mechanisms.


The mRNA levels of CaMKIIγ in 5 CRC cell lines, tumor tissues and matched adjacent tissues from 20 CRC patients were examined by semi-quantitative RT-PCR. The lentiviral vector pLenti6.3-MCS-IRES2-eGFP was used to generate the lentivirus particle Lenti-CaMKIIγ for transfecting SW620 cells. The proliferation ability of the transfected SW620-CaMKIIγ cells was assessed by growth curve and colony formation assay. The expression of IKKα, IKKβ, IKKγ, p-IKKα/β, p-IκB andIκB of the transfected cells were determined by Western blotting, and the expression and localization of nuclear factor-κB (NF-κB) p65 were detected by immunofluorescence. In nude mouse models bearing the transfected SW620-CaMKIIγ cell xenograft, the tumor volume was measured twice a week.


CaMKIIγ mRNA showed high expressions in the 5 colorectal cancer cell lines. Eighteen of the 20 tumor tissues showed higher expressions of CaMKIIγ than the adjacent non-tumor tissues. The proliferation of transfected SW620-CaMKIIγ cells was enhanced significantly. CaMKIIγ activated NF-κB signaling pathway and led to NF-κB p65 nuclear translocation. In the tumor-bearing mouse model, the volume of the tumors generated by the transfected SW620-CaMKIIγ cells was 1.46- and 1.68-fold higher than that of the tumors with the control cells at the 8th and 12th day, respectively.


CaMKIIγ can effectively promote the growth of colorectal cancer cells in vitro and in vivo by activating NF-κB signaling pathway.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Loading ...
    Support Center