Format

Send to

Choose Destination
Zhonghua Xue Ye Xue Za Zhi. 2013 May;34(5):417-20. doi: 10.3760/cma.j.issn.0253-2727.2013.05.009.

[Effect of TAK1 gene silencing on the apoptosis of Kasumi-1 cells induced by arsenic trioxide].

[Article in Chinese; Abstract available in Chinese from the publisher]

Author information

1
Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China.

Abstract

in English, Chinese

OBJECTIVE:

To study the effect of transforming growth factor-β activated kinase-1 (TAK1) gene silencing on the proliferation and apoptosis of Kasumi-1 cells induced by arsenic trioxide (As₂O₃).

METHODS:

Acute myeloid leukemia with t(8;21) cell line Kasumi-1 cells were treated with As₂O₃ or in combination with TAK1 siRNA interference technology. The experiment was divided into four groups: Kasumi-1 cells without any treatment, TAK1 specific siRNA transfection alone, Kasumi-1 cells treated with different concentration of As₂O₃, TAK1siRNA transfection combined with As₂O₃. CCK-8 was used to detect the cell viability. The expression of phosphorylated c-Jun N-terminal kinase (P-JNK) was determined by Western Blot. Cell apoptosis and growth were examined by morphological and colony formation assay.

RESULTS:

After Kasumi-1 cells were treated with As₂O₃, the rate of cell inhibition was concentration-dependent, and the 50% inhibitory concentration was 3.5 μmol/L. The highest expression level of P-JNK appeared in 30 minutes after cells were treated with As₂O₃. The apoptosis rates of Kasumi-1 cells without any treatment, TAK1 siRNA interference alone group, As₂O₃ alone group and the combined group were (5.02 ± 1.13)%, (6.18 ± 0.28)%, (48.33 ± 2.70)% and (86.07 ± 2.21)%; colony formation rates were (73.83 ± 2.78)%, (76.03 ± 1.46)%, (55.07 ± 1.50)% and (22.20 ± 1.15)%; apoptosis rate of TAK1 siRNA group and the untreated group has no significant difference (P = 0.052); colony formation rate between TAk1 siRNA group and the untreated group has no significant difference (P = 0.179), but the difference in other groups was significant (P = 0.000).

CONCLUSION:

Silencing the expression of TAK1 can enhance the anti-proliferative and pro-apoptotic effect of As₂O₃ on Kasumi-1 cells, and its mechanism may be through the TAK1 downstream JNK signal pathway.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Chinese Medical Association Publishing House Ltd.
Loading ...
Support Center