Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2013 Jun 14;435(4):646-50. doi: 10.1016/j.bbrc.2013.05.038. Epub 2013 May 18.

A synthetic bivalent ligand of CXCR4 inhibits HIV infection.

Author information

  • 1Department of Pharmacology, SUNY Upstate Cancer Research Institute, State University of New York, Syracuse, NY 13210, USA.


G-protein-coupled receptors (GPCRs) are cell membrane protein receptors that transduce signals across the cell membrane and are important targets for therapeutic interventions. As members of the GPCR superfamily, chemokine receptors such as CXCR4 play critical roles in normal physiology as well as the pathology of many human diseases including cancer, inflammation, autoimmune diseases, and human immunodeficiency virus (HIV) infection. Here we report the discovery and study of a novel peptide ligand of CXCR4 using d-amino acids and bivalent ligand approach. This peptide, DV1-K-(DV3), shows very high affinity for CXCR4 with an IC50 of 4 nM in anti-CXCR4 monoclonal antibody (mAb) 12G5 competitive assay, which is more potent than full length natural ligand SDF-1α, even though the peptide is less than half of the number of residues of SDF-1α. This peptide can block the calcium influx stimulated by SDF-1α and inhibit cancer cell migration in vitro via CXCR4, thus functioning as a CXCR4 antagonist. Furthermore, DV1-K-(DV3) peptide displayed anti-HIV activity by inhibiting HIV-1 infection mediated by CXCR4. With its high receptor affinity and stability from D-amino acids, this peptide may be a new probe of CXCR4 functions in physiology and pathology and promising lead for therapeutic development.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center