Format

Send to

Choose Destination
Appl Environ Microbiol. 2013 Jul;79(14):4433-9. doi: 10.1128/AEM.00973-13. Epub 2013 May 17.

Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones.

Author information

1
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.

Abstract

Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels. We engineered R. eutropha for the production of fatty acid-derived, diesel-range methyl ketones. Modifications engineered in R. eutropha included overexpression of a cytoplasmic version of the TesA thioesterase, which led to a substantial (>150-fold) increase in fatty acid titer under certain conditions. In addition, deletion of two putative β-oxidation operons and heterologous expression of three genes (the acyl coenzyme A oxidase gene from Micrococcus luteus and fadB and fadM from Escherichia coli) led to the production of 50 to 65 mg/liter of diesel-range methyl ketones under heterotrophic growth conditions and 50 to 180 mg/liter under chemolithoautotrophic growth conditions (with CO2 and H2 as the sole carbon source and electron donor, respectively). Induction of the methyl ketone pathway diverted substantial carbon flux away from PHB biosynthesis and appeared to enhance carbon flux through the pathway for biosynthesis of fatty acids, which are the precursors of methyl ketones.

PMID:
23686271
PMCID:
PMC3697500
DOI:
10.1128/AEM.00973-13
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center