Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2013 May 30;497(7451):611-4. doi: 10.1038/nature12161. Epub 2013 May 15.

Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes.

Author information

1
Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA. stevensn@ohio.edu

Abstract

Apes and Old World monkeys are prominent components of modern African and Asian ecosystems, yet the earliest phases of their evolutionary history have remained largely undocumented. The absence of crown catarrhine fossils older than ∼20 million years (Myr) has stood in stark contrast to molecular divergence estimates of ∼25-30 Myr for the split between Cercopithecoidea (Old World monkeys) and Hominoidea (apes), implying long ghost lineages for both clades. Here we describe the oldest known fossil 'ape', represented by a partial mandible preserving dental features that place it with 'nyanzapithecine' stem hominoids. Additionally, we report the oldest stem member of the Old World monkey clade, represented by a lower third molar. Both specimens were recovered from a precisely dated 25.2-Myr-old stratum in the Rukwa Rift, a segment of the western branch of the East African Rift in Tanzania. These finds extend the fossil record of apes and Old World monkeys well into the Oligocene epoch of Africa, suggesting a possible link between diversification of crown catarrhines and changes in the African landscape brought about by previously unrecognized tectonic activity in the East African rift system.

PMID:
23676680
DOI:
10.1038/nature12161
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center