Format

Send to

Choose Destination
Nature. 2013 May 30;497(7451):594-7. doi: 10.1038/nature12187. Epub 2013 May 15.

Cloning of Dirac fermions in graphene superlattices.

Author information

1
School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK.

Abstract

Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties. In previous studies (see, for example, refs 1-8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice. Evidence for the formation of superlattice minibands (forming a fractal spectrum known as Hofstadter's butterfly) has been limited to the observation of new low-field oscillations and an internal structure within Landau levels. Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate's moiré potential acts as a superlattice and leads to profound changes in the graphene's electronic spectrum. Second-generation Dirac points appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene's conduction and valence bands. Strong magnetic fields lead to Zak-type cloning of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures.

PMID:
23676678
DOI:
10.1038/nature12187

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center