Send to

Choose Destination
PLoS One. 2013 May 7;8(5):e62969. doi: 10.1371/journal.pone.0062969. Print 2013.

Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta.

Author information

Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.


Placental cortisol is inactivated in normotensive pregnancies, but is frequently present in pre-eclampsia associated placentae. Since glucocorticoids are strongly associated with the programming of long-term health, we assessed DNA methylation of genes involved in cortisol signalling and bioavailability, and hormonal signalling in the placenta of normotensive and hypertensive pregnancies. Candidate genes/CpG sites were selected through analysis of Illumina Infinium HumanMethylation450 BeadChip array data on control (n = 19) and early onset pre-eclampsia (EOPET; n = 19) placental samples. DNA methylation was further quantified by bisulfite pyrosequencing in a larger cohort of control (n = 111) cases, in addition to EOPET (n = 19), late onset pre-eclampsia (LOPET; n = 18) and normotensive intrauterine growth restriction (nIUGR; n = 13) cases. DNA methylation (percentage points) was increased at CpG sites within genes encoding the glucocorticoid receptor (NR3C1 exon 1D promoter; +8.46%; P<0.01) and corticotropin releasing hormone (CRH) binding protein (CRHBP intron 3; +9.14%; P<0.05), and decreased within CRH (5' UTR; -4.30%; P = 0.11) in EOPET-associated placentae, but not in LOPET nor nIUGR cases, compared to controls. Differential DNA methylation was not observed among groups at the 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene promoter. Significant hypomethylation was observed in pre-eclampsia but not nIUGR placentae for steroidogenic genes, including CYP11A1 (exon1; EOPET; -9.66%; P<0.00001, and LOPET; -5.77%; P<0.001), 3β-hydroxy-delta-5-steroid dehydrogenase type 1 (HSD3B1 exon 2; EOPET; -12.49%; P<0.00001, and LOPET; -6.88%; P<0.001), TEA domain family member 3 (TEAD3 intron 1; EOPET; -12.56%; P<0.00001) and CYP19 (placental-specific exon 1.1 promoter; EOPET; -10.62%, P<0.0001). These data represent dysregulation of the placental epigenome in pre-eclampsia related to genes involved in maintaining the hormonal environment during pregnancy and highlights particular susceptibility in the early onset syndrome.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center