Format

Send to

Choose Destination
See comment in PubMed Commons below
Vaccine. 2013 Jun 26;31(30):3039-45. doi: 10.1016/j.vaccine.2013.04.071. Epub 2013 May 9.

A novel tetrameric gp350 1-470 as a potential Epstein-Barr virus vaccine.

Author information

1
Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.

Abstract

Infectious mononucleosis and B-cell transformation in response to infection with Epstein-Barr virus (EBV) is dependent upon binding of the EBV envelope glycoprotein gp350 to CD21 on B-cells. Gp350-specific antibody comprises most of the EBV neutralizing activity in the serum of infected patients, making this protein a promising target antigen for a prophylactic EBV vaccine. We describe a novel, tetrameric gp350-based vaccine that exhibits markedly enhanced immunogenicity relative to its monomeric counterpart. Plasmid DNA was constructed for synthesis, within transfected CHO cells, of a tetrameric, truncated (a.a. 1-470) gp350 protein (gp350(1-470)). Tetrameric gp350(1-470) induced ≈ 20-fold higher serum titers of gp350(1-470)-specific IgG and >19-fold enhancements in neutralizing titers at the highest dose, and was >25-fold more immunogenic on a per-weight basis than monomeric gp350(1-470). Further, epidermal immunization with plasmid DNA encoding gp350(1-470) tetramer induced 8-fold higher serum titers of gp350(1-470)-specific IgG relative to monomer. Tetrameric gp350(1-470) binding to human CD21 was >24-fold more efficient on a per-weight basis than monomer, but neither tetramer nor monomer mediated polyclonal human B-cell activation. Finally, the introduction of strong, universal tetanus toxoid (TT)-specific CD4+ T-cell epitopes into the tetrameric gp350(1-470) had no effect on the gp350(1-470)-specific IgG response in naïve mice, and resulted in suppressed gp350(1-470)-specific IgG responses in TT-primed mice. Collectively, these data suggest that tetrameric gp350(1-470) is a potentially promising candidate for testing as a prophylactic EBV vaccine, and that protein multimerization, using the approach described herein, is likely to be clinically relevant for enhancing the immunogenicity of other proteins of vaccine interest.

PMID:
23665339
PMCID:
PMC3700395
DOI:
10.1016/j.vaccine.2013.04.071
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center