Format

Send to

Choose Destination
See comment in PubMed Commons below
Clin Exp Immunol. 2013 Sep;173(3):411-8. doi: 10.1111/cei.12134.

Genetic deletion of granzyme B does not confer resistance to the development of spontaneous diabetes in non-obese diabetic mice.

Author information

1
Department of Endocrinology and Metabolism, Unit of Translational Medicine, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Fukuoka, Japan.

Abstract

Granzyme B (GzmB) and perforin are proteins, secreted mainly by natural killer cells and cytotoxic T lymphocytes that are largely responsible for the induction of apoptosis in target cells. Because type 1 diabetes results from the selective destruction of β cells and perforin deficiency effectively reduces diabetes in non-obese diabetic (NOD) mice, it can be deduced that β cell apoptosis involves the GzmB/perforin pathway. However, the relevance of GzmB remains totally unknown in non-obese diabetic (NOD) mice. In this study we have focused on GzmB and examined the consequence of GzmB deficiency in NOD mice. We found that NOD.GzmB(-/-) mice developed diabetes spontaneously with kinetics similar to those of wild-type NOD (wt-NOD) mice. Adoptive transfer study with regulatory T cell (Treg )-depleted splenocytes (SPCs) into NOD-SCID mice or in-vivo Treg depletion by anti-CD25 antibody at 4 weeks of age comparably induced the rapid progression of diabetes in the NOD.GzmB(-/-) mice and wt-NOD mice. Expression of GzmA and Fas was enhanced in the islets from pre-diabetic NOD.GzmB(-/-) mice. In contrast to spontaneous diabetes, GzmB deficiency suppressed the development of cyclophosphamide-promoted diabetes in male NOD mice. Cyclophosphamide treatment led to a significantly lower percentage of apoptotic CD4(+) , CD8(+) and CD4(+) CD25(+) T cells in SPCs from NOD.GzmB(-/-) mice than those from wt-NOD mice. In conclusion, GzmB, in contrast to perforin, is not essentially involved in the effector mechanisms for β cell destruction in NOD mice.

KEYWORDS:

NOD mice; apoptosis; transgenic/knock-out mice; type 1 diabetes

PMID:
23663075
PMCID:
PMC3949628
DOI:
10.1111/cei.12134
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center