Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropsychopharmacology. 2013 Oct;38(11):2090-100. doi: 10.1038/npp.2013.118. Epub 2013 May 10.

Effects of ketamine on context-processing performance in monkeys: a new animal model of cognitive deficits in schizophrenia.

Author information

1
1] Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN, USA [2] Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA [3] Brain Sciences Center, VA Medical Center, Minneapolis, MN, USA.

Abstract

Cognitive deficits are at the crux of why many schizophrenia patients have poor functional outcomes. One of the cognitive symptoms experienced by schizophrenia patients is a deficit in context processing, the ability to use contextual information stored in working memory to adaptively respond to subsequent stimuli. As such, context processing can be thought of as the intersection between working memory and executive control. Although deficits in context processing have been extensively characterized by neuropsychological testing in schizophrenia patients, they have never been effectively translated to an animal model of the disease. To bridge that gap, we trained monkeys to perform the same dot pattern expectancy (DPX) task, which has been used to measure context-processing deficits in human patients with schizophrenia. In the DPX task, the first stimulus in each trial provides the contextual information that subjects must remember in order to appropriately respond to the second stimulus in the trial. We found that administration of ketamine, an N-methyl-D-aspartate receptor antagonist, in monkeys caused a dose-dependent failure in context processing, replicating in monkeys the same specific pattern of errors committed by patients with schizophrenia when performing the same task. Therefore, our results provide the first evidence that context-processing dysfunction can be modeled in animals. Replicating a schizophrenia-like behavioral performance pattern in monkeys performing the same task used in humans provides a strong bridge to better understand the biological basis for this psychiatric disease and its cognitive manifestations using animal models.

PMID:
23660706
PMCID:
PMC3773669
DOI:
10.1038/npp.2013.118
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center