Send to

Choose Destination
See comment in PubMed Commons below
J Biotechnol. 2013 Jun 20;166(1-2):12-9. doi: 10.1016/j.jbiotec.2013.04.015. Epub 2013 May 6.

Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides.

Author information

School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510600, China.


A highly active and stable cross-linked enzyme aggregates (CLEAs) of epoxide hydrolases (EHs) from Mung bean, which plays a crucial role in synthesis of valuable enantiopure diols, were successfully prepared and characterized. Under the optimum preparation conditions, the activity recovery of CLEAs recorded 92%. The CLEAs were more efficient than the free enzyme in catalyzing asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol in organic solvent-containing biphasic system. The biocatalytic reaction performed in n-hexane/buffer biphasic system had a clearly faster initial reaction rate, much higher product yield and product e.e. value than that in aqueous medium. Moreover, the optimal volume ratio of n-hexane to buffer, reaction temperature, buffer pH value and substrate concentration for the enzymatic hydrolysis were found to be 1:1, 40 °C, 7.5 and 30 mM, respectively, under which the initial reaction rate, product yield and product e.e. value were 13.26 mM/h, 46% and 93.5%, respectively. The CLEAs retained more than 50% of their initial activity after 8 batches of re-use in phosphate buffer and maintained 53% of their original activity after 8 reaction cycle in biphasic system. The efficient biocatalytic process with CLEAs proved to be feasible on a 250-mL preparative scale, exhibiting great potential for asymmetric synthesis of chiral diols.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center