Format

Send to

Choose Destination
Nat Commun. 2013;4:1798. doi: 10.1038/ncomms2822.

FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA.

Author information

1
Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.

Abstract

N(6)-methyladenosine is a prevalent internal modification in messenger RNA and non-coding RNA affecting various cellular pathways. Here we report the discovery of two additional modifications, N(6)-hydroxymethyladenosine (hm(6)A) and N(6)-formyladenosine (f(6)A), in mammalian messenger RNA. We show that Fe(II)- and α-ketoglutarate-dependent fat mass and obesity-associated (FTO) protein oxidize N(6)-methyladenosine to generate N(6)-hydroxymethyladenosine as an intermediate modification, and N(6)-formyladenosine as a further oxidized product. N(6)-hydroxymethyladenosine and N(6)-formyladenosine have half-life times of ~3 h in aqueous solution under physiological relevant conditions, and are present in isolated messenger RNA from human cells as well as mouse tissues. These previously unknown modifications derived from the prevalent N(6)-methyladenosine in messenger RNA, formed through oxidative RNA demethylation, may dynamically modulate RNA-protein interactions to affect gene expression regulation.

PMID:
23653210
PMCID:
PMC3658177
DOI:
10.1038/ncomms2822
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center