Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Commun. 2013;4:1821. doi: 10.1038/ncomms2794.

Regulation of adipose oestrogen output by mechanical stress.

Author information

1
Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.

Abstract

Adipose stromal cells are the primary source of local oestrogens in adipose tissue, aberrant production of which promotes oestrogen receptor-positive breast cancer. Here we show that extracellular matrix compliance and cell contractility are two opposing determinants for oestrogen output of adipose stromal cells. Using synthetic extracellular matrix and elastomeric micropost arrays with tunable rigidity, we find that increasing matrix compliance induces transcription of aromatase, a rate-limiting enzyme in oestrogen biosynthesis. This mechanical cue is transduced sequentially by discoidin domain receptor 1, c-Jun N-terminal kinase 1, and phosphorylated JunB, which binds to and activates two breast cancer-associated aromatase promoters. In contrast, elevated cell contractility due to actin stress fibre formation dampens aromatase transcription. Mechanically stimulated stromal oestrogen production enhances oestrogen-dependent transcription in oestrogen receptor-positive tumour cells and promotes their growth. This novel mechanotransduction pathway underlies communications between extracellular matrix, stromal hormone output, and cancer cell growth within the same microenvironment.

PMID:
23652009
PMCID:
PMC3921626
DOI:
10.1038/ncomms2794
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center