Format

Send to

Choose Destination
Environ Health Perspect. 2013 Jul;121(7):774-83. doi: 10.1289/ehp.1205502. Epub 2013 May 7.

Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review.

Author information

1
Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709 , USA. taylorkw@niehs.nih.gov

Abstract

BACKGROUND:

Diabetes is a major threat to public health in the United States and worldwide. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health.

OBJECTIVE:

We assessed the epidemiologic literature for evidence of associations between persistent organic pollutants (POPs) and type 2 diabetes.

METHODS:

Using a PubMed search and reference lists from relevant studies or review articles, we identified 72 epidemiological studies that investigated associations of persistent organic pollutants (POPs) with diabetes. We evaluated these studies for consistency, strengths and weaknesses of study design (including power and statistical methods), clinical diagnosis, exposure assessment, study population characteristics, and identification of data gaps and areas for future research.

CONCLUSIONS:

Heterogeneity of the studies precluded conducting a meta-analysis, but the overall evidence is sufficient for a positive association of some organochlorine POPs with type 2 diabetes. Collectively, these data are not sufficient to establish causality. Initial data mining revealed that the strongest positive correlation of diabetes with POPs occurred with organochlorine compounds, such as trans-nonachlor, dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), and dioxins and dioxin-like chemicals. There is less indication of an association between other nonorganochlorine POPs, such as perfluoroalkyl acids and brominated compounds, and type 2 diabetes. Experimental data are needed to confirm the causality of these POPs, which will shed new light on the pathogenesis of diabetes. This new information should be considered by governmental bodies involved in the regulation of environmental contaminants.

PMID:
23651634
PMCID:
PMC3701910
DOI:
10.1289/ehp.1205502
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center